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BERNSTEIN POLYNOMIAL APPROACH FOR SOLUTION OF
HIGHER-ORDER MIXED LINEAR FREDHOLM

INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS WITH VARIABLE
COEFFICIENTS

S. DAVAEIFAR1, J. RASHIDINIA1, M. AMIRFAKHRIAN1

Abstract. Bernstein collocation matrix method is presented to solve m-th order linear Fred-

holm integro-differential-difference equations subjected to mixed conditions. The methodology

is based on approximation by the truncated Bernstein series, which converts the given equa-

tion and the conditions into a system of linear algebraic equations with Bernstein coefficients.

By solving the arising system, the Bernstein coefficients of the solution can be obtained. The

method is also valid for any combination of differential, difference, differential-difference and

Fredholm integral equations. The applicability and validity of the proposed scheme is demon-

strated by numerical experiments and comparative analysis of the results is given too.

Keywords: mixed linear Fredholm integro-differential-difference equations, Bernstein polynomi-

als and series, collocation points.
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1. Introduction

Mixed integro-differential-difference equations have become the focus for researchers. These
equations are conventionally categorized into the Fredholm integro-differential-difference equa-
tions and Volterra integro-differential-difference equations.

These equations are frequently used in many applied domains including engineering, me-
chanics, physics, chemistry, astronomy, biology, economics, potential theory, electrostatics,
etc [3, 6, 11-13, 15, 17, 21, 22, 24, 27, 29, 33-35, 37, 38, 40, 47-49, 51, 57]. The mathematicians and
physicists have devoted considerable effort aimed at the numerical solutions of the integro-
differential-difference equations.

For instance, successive approximations, Adomian decomposition, Chebyshev and Taylor col-
location methods, Haar Wavelet method, Taylor, Tau, Legendre and Walsh series methods,
Bessel matrix method, variational iteration method, Legendre wavelet method, Sine-Cosine
wavelets, finite difference method, rationalized Haar functions, Cas wavelet, differential trans-
form method, Homotopy perturbation method, etc [1, 5, 7, 8, 15, 20, 26, 36, 40, 43-46, 48, 54-56].

These equations befall repeatedly as a model in mathematical biology and the physical sciences
[17, 39]. The integro-difference equations given in [39, pp.304, 320] describe the efflux of gas
from the open end of a tube and the integro-differential-difference equation given by the integral
equation of Palm arises in queuing theory [39, p.304]. The integro-differential equation given in
[57] is a vivid example of one-dimensional viscoelasticity and also a model for circulating fuel in
nuclear reactors [17].
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Boundary value problems involving integro-differential-difference equations in studying vari-
ational elements of control theory, when encountering a complicated problem using the time
delays effect [7, 8] and signal transmission [39], biological problems for determining expected
time for generation of action potentials in nerve cells [1, 2, 57]. This is applied in modeling
activation of a neuron [7], on epidemics and population [39], in two-body problems of physical
systems whose acceleration depends upon its velocity and its position at earlier instants, and in
formulation of biological reaction phenomena to X-rays [17, 44, 39].

The Monte Carlo and direct methods are applied by Farnoosh and Ebrahimi and Asady et al.,
respectively [14, 2]. Taylor and Chebyshev matrix methods have been used by Sezer et al. since
the early 1990s to solve the linear differential, Fredholm integral, Fredholm integro-differential,
difference, integro-difference and systems of integro-differential equations [44, 30, 23, 41, 42, 16,
18].

The major emphasis of the study is on the Fredholm integro-differential-difference equations,
where as all the algorithms employed in the paper are used for the Volterra integro-differential-
difference equation with minor modifications. Although integro-differential-difference equations
are crucially importance, nonetheless, are hard to solve analytically as well as numerically.

The basic idea of this study is to developed the numerical solution to the m -th order linear
Fredholm integro-differential-difference equation with variable coefficients

m∑
k=0

r∑
j=0

pkj(x) y(k)(µkjx + τkj) = g(x)+

λ
∫ 1

0

q∑
p=0

s∑
l=0

κpl(x, t) y(p)(γpl t + δpl) dt, 0 ≤ x, t ≤ 1,
(1)

where q ≤ m, under the mixed conditions

m−1∑

k=0

f∑

ξ=0

ak
ξL y(k)(ηξ) = λL, L = 0, . . . , m− 1. (2)

Here {pkj(x)}m, r
k=0, j=0 , g(x) ∈ L2[0, 1] and {κpl(x, t)}q, s

p=0, l=0 ∈ L2([0, 1]×[0, 1]) are known func-
tions, y(x) is the unknown function to be determined and the real coefficients {µkj , τkj}m, r

k=0, j=0 ,

{γpl, δpl}q, s
p=0, l=0 ,

{
ak

ξL, λL

}f, m−1, m−1

ξ=0, k=0, L=0
and λ are appropriate constants. Note that ηξ, ξ =

0, . . . , f are given points in the spatial domain of the problem. The aim is therefore, to find an
approximate solution of Eq. (1), expressed in the following form:

y(x) ∼= yn+1(x) =
n∑

i=0

ci Bi, n(x), 0 ≤ x ≤ 1, (3)

where, for n ≥ 1 the functions {Bi, n(x)}n
i=0 denotes the Bernstein basis polynomials (B-

polynomials) of n -th degree, as defined by [4]:

Bi, n(x) =
(

n

i

)
xi(1− x)n−i, 0 ≤ x ≤ 1, i = 0, 1, . . . , n, (4)

ci, i = 0, . . . , n, are the unknown Bernstein coefficients that ought to be determined and n

represents any positive integer in such a manner that n ≥ m. The collection points are selected
to obtain an approximate solution in the form (3) of the problem (1) and (2), as expressed and
defined by:

xi =
i

n
, i = 0, . . . , n. (5)
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The Bernstein polynomials are applied to determine the approximate solutions of differential,
linear and nonlinear Fredholm integral and integro-differential equations and nonlinear Volterra-
Fredholm-Hammerstein integral equations [53, 32, 10, 31, 28].
The paper is structured to encompass the introduction, followed by the fundamental matrix
relations related to the m -th order linear Fredholm integro-differential-difference equation with
variable coefficients. Section 3 deals with the solution methods for these equations. Section
4, provides an explanation on the accuracy of solving the linear Fredholm integro-differential-
difference equation with variable coefficients. Finally, section 5, provides few numerical exam-
ples, followed by overall conclusions of the study.

2. Fundamental matrix relations

By simplification of the Eq. (1), a new relation can be derived as follows

D(x) = g(x) + λ IF (x), (6)

where, the differential-difference part

D(x) =
m∑

k=0

r∑

j=0

pkj(x) y(k)(µkjx + τkj), (7)

and the Fredholm integral part can be expressed in the following form:

IF (x) =
∫ 1

0

q∑

p=0

s∑

l=0

κpl(x, t) y(p)(γpl t + δpl) dt. (8)

These parts and the mixed conditions (2) are converting to the matrix forms in the following
sections.
The approximate solution y(x) and its k -th derivative y(k)(x) as defined by a truncated Bernstein
series (3) are considered. The truncated series (3) are expressed in the matrix form as follows:

y(x) ∼= B(x) C,

y(k)(x) ∼= B(k)(x) C,
(9)

where,
B(x) = [B 0, n(x), B 1, n(x), . . . , Bn, n(x)] ,

C = [c0, c1, . . . , cn]T .
(10)

By applying the binomial expansion of (1− x)n−i , the following relation is derived at:

Bi, n(x) =
n−i∑

k=0

(−1)k

(
n

i

)(
n− i

k

)
xi+k. (11)

The corresponding matrix relation can be found by the following equation:

B(x) = Tn(x) A or BT (x) = AT T T
n (x), (12)

where
Tn(x) =

[
1, x, x2, . . . , xn

]
, (13)

and

A =




(−1)0
(
n
0

)
0 0 . . . 0

(−1)1
(
n
0

)(
n−0

1

)
(−1)0

(
n
1

)
0 . . . 0

(−1)2
(
n
0

)(
n−0

2

)
(−1)1

(
n
1

)(
n−1

1

)
(−1)0

(
n
2

)
. . . 0

...
...

...
. . .

...
(−1)n−0(n

0

)(
n−0
n−0

)
(−1)n−1(n

1

)(
n−1
n−1

)
(−1)n−2(n

2

)(
n−2
n−2

)
. . . (−1)0

(
n
n

)




. (14)
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By substituting Eq. (12) into Eq. (9), the matrix forms for y(x) and y(k)(x) are derived in the
form of following equations:

y(x) ∼= Tn(x) AC, (15)

and

y(k)(x) ∼= T (k)
n (x) AC. (16)

There is a relation between the vector Tn(x) and its derivative T
(1)
n (x) as follow:

T
(1)
n (x) =

[
1, x, x2, . . . , xn

](1) =
[
0, 1, 2x, . . . , n xn−1

]

=
[
1, x, x2, . . . , xn

]




0 1 0 · · · 0 0
0 0 2 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 n

0 0 0 · · · 0 0




= Tn(x) DTn ,

(17)

where

DTn =




0 1 0 · · · 0 0
0 0 2 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 n

0 0 0 · · · 0 0




. (18)

The procedure for arriving at the vector T
(k)
n (x) is used in terms of the vector Tn(x) as follows:

T
(1)
n (x) = Tn(x) (DTn)1,

T
(2)
n (x) = T

(1)
n (x)DTn = (Tn(x) DTn) DTn = Tn(x) (DTn)2,

T
(3)
n (x) = T

(2)
n (x)DTn =

(
Tn(x) (DTn)2

)
DTn = Tn(x) (DTn)3,

...

T
(k)
n (x) = T

(k−1)
n (x)DTn =

(
Tn(x) (DTn)k−1

)
DTn = Tn(x) (DTn)k.

(19)

The matrix form of the k -th derivatives of function y(x) is obtained, by replacing the matrix
Eq. (19) into Eq. (16), as follows

y(k)(x) ∼= Tn(x) (DTn)k AC. (20)

2.1. Matrix relations for the differential-difference part. Substitution of the quantities
µkjx + τkj for the x in Eq. (20) the matrix form can therefore, be obtained by the following
equation:

y(k)(µkjx + τkj) ∼= Tn(µkjx + τkj) (DTn)kAC, (21)

which according to Eq. (13), the following relation can be derived at:

Tn(µkjx + τkj) =
[
1, µkjx + τkj , (µkjx + τkj)

2, . . . , (µkjx + τkj)
n
]
. (22)

All elements of vector Tn(µkjx + τkj) in terms of
{
xi

}n

i=0
are approximated, in order to obtain

the vector Tn(µkjx + τkj) in terms of the vector Tn(x). Application of the binomial expansion
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of (µkjx + τkj)R, R = 0, 1, . . . , n, makes it possible to derive the following equations:

1 =
(
0
0

)
µ0

kj τ0
kj ,

µkjx + τkj =
(
1
0

)
µ0

kj τ1
kj +

(
1
1

)
µ1

kj τ0
kj x,

(µkjx + τkj)
2 =

(
2
0

)
µ0

kj τ2
kj +

(
2
1

)
µ1

kj τ1
kj x +

(
2
2

)
µ2

kj τ0
kj x2 , (23)

...
(µkjx + τkj)

n =
(
n
0

)
µ0

kj τn
kj +

(
n
1

)
µ1

kj τn−1
kj x +

(
n
2

)
µ2

kj τn−2
kj x2 + · · ·+ (

n
n

)
µn

kj τ0
kj xn.

(23)

Therefore, by defining

Z(µkj , τkj) =




(
0
0

)
µ0

kj τ0
kj

(
1
0

)
µ0

kj τ1
kj

(
2
0

)
µ0

kj τ2
kj . . .

(
n
0

)
µ0

kj τn
kj

0
(
1
1

)
µ1

kj τ0
kj

(
2
1

)
µ1

kj τ1
kj . . .

(
n
1

)
µ1

kj τn−1
kj

0 0
(
2
2

)
µ2

kj τ0
kj . . .

(
n
2

)
µ2

kj τn−2
kj

...
...

...
. . .

...
0 0 0 . . .

(
n
n

)
µn

kj τ0
kj




, (24)

the relation between vectors Tn(µkjx + τkj) and Tn(x) is

Tn(µkjx + τkj) = Tn(x) Z(µkj , τkj). (25)

By substituting the matrix form (25) into Eq. (21), the following matrix relation can be derived
at:

y(k)(µkjx + τkj) ∼= Tn(x) Z(µkj , τkj)(DTn)kAC. (26)

Thus, the matrix representation of the differential-difference part can be expressed in the fol-
lowing form:

D(x) =
m∑

k=0

r∑

j=0

Pkj(x) Tn(x) Z(µkj , τkj)(DTn)kAC. (27)

2.2. Matrix relations for the Fredholm integral part. The matrix relation for Fredholm
integral part IF (x) in Eq. (6) can now be found. The kernel functions {κpl(x, t)}q, s

p=0, l=0 can be
expanded in B-Polynomials as follows:

κpl(x, t) ∼=
n∑

i=0

n∑

σ=0

kpl
iσBi, n(x) Bσ, n(t). (28)

Then the matrix representation of the kernel functions {κpl(x, t)}q, s
p=0, l=0 is given expressed by

the following relation:

κpl(x, t) ∼= B(x)KplB
T (t), (29)

where

Kpl =
[
kpl

iσ

]
, i, σ = 0, . . . , n, (30)

and the elements of Kpl are given by

kpl
iσ =

〈Bi, n(x), 〈κpl(x, t), Bσ, n(t)〉〉
〈Bi, n(x), Bi, n(x)〉 〈Bσ, n(t), Bσ, n(t)〉 , i, σ = 0, . . . , n. (31)

Substituting the Eq. (12) into Eq. (29) in order to derive

κpl(x, t) ∼= Tn(x) AKpl A
T T T

n (t). (32)
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By substituting the matrix forms (32) and (26) in accordance with the functions {κpl(x, t)}q, s
p=0, l=0

and y(p)(γpl t + δpl) into the Fredholm integral part the fundamental matrix equations are ob-
tained as follows:

IF (x) ∼=
∫ 1

0

q∑
p=0

s∑
l=0

Tn(x) AKpl A
T T T

n (t) Tn(t) Z(γpl, δpl)(DTn)pAC dt

= Tn(x)
q∑

p=0

s∑
l=0

AKpl A
T

{∫ 1
0 T T

n (t) Tn(t) dt
}

Z(γpl, δpl)(DTn)pAC.
(33)

The matrix representation of the Fredholm integral part can be expressed as:

IF (x) = Tn(x)
q∑

p=0

s∑

l=0

AKpl A
T H Z(γpl, δpl)(DTn)pAC , (34)

in which H is a well-known Hilbert matrix

H =
∫ 1

0
T T

n (t) Tn(t) dt =




1 1
2

1
3 · · · 1

n+1
1
2

1
3

1
4 · · · 1

n+2
...

...
...

. . .
...

1
n+1

1
n+2

1
n+3 · · · 1

2n+1


 . (35)

2.3. Matrix relations for the mixed conditions. The Eq.(20) can be used to obtain the
corresponding matrix form for the m mixed conditions (2), according to which the followings
equation can be expressed:

m−1∑

k=0

f∑

ξ=0

[
ak

ξLTn(ηξ)
]

(DTn)k AC = λL, L = 0, . . . , m− 1. (36)

The matrix form for conditions (2) can therefore be written by the following equation:

UL C = [λL] or [UL; λL] , L = 0, . . . , m− 1, (37)

where

UL =
m−1∑

k=0

f∑

ξ=0

[
ak

ξLTn(ηξ)
]

(DTn)k A = [uL 0, uL 1, . . . , uL n] . (38)

3. Solution method

The fundamental matrix equation corresponding to Eq. (1) can now be constructed. For this
reason, the Eq. (27) and Eq. (34) is substituted in the Eq. (1) in order to at the following
matrix equation

m∑
k=0

r∑
j=0

Pkj(x) Tn(x) Z(µkj , τkj)(DTn)kAC = g(x)

+λTn(x)
q∑

p=0

s∑
l=0

AKpl A
T H Z(γpl, δpl)(DTn)pAC .

(39)

By substituting the collocation points (5) into Eq. (39), the system of matrix equations are
derived at as follows

m∑
k=0

r∑
j=0

Pkj(xi) Tn(xi) Z(µkj , τkj)(DTn)kAC = g(xi)

+λTn(xi)
q∑

p=0

s∑
l=0

AKpl A
T H Z(γpl, δpl)(DTn)pAC .

(40)
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Eq. (40) can be summarized and expressed in the following form




m∑

k=0

r∑

j=0

Pkj T Z(µkj , τkj)(DTn)k − λT

q∑

p=0

s∑

l=0

AKpl A
T H Z(γpl, δpl)(DTn)p



AC = G, (41)

where

Pkj =




Pkj(x0) 0 0 · · · 0
0 Pkj(x1) 0 · · · 0
0 0 Pkj(x2) · · · 0
...

...
...

. . .
...

0 0 0 · · · Pkj(xn)




,

T =




Tn(x0)
Tn(x1)
Tn(x2)

...
Tn(xn)




=




1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

...
...

. . .
...

1 xn x2
n · · · xn

n




,

G =




g(x0)
g(x1)
g(x2)

...
g(xn)




.

(42)

Let

W =





m∑

k=0

r∑

j=0

Pkj T Z(µkj , τkj)(DTn)k − λT

q∑

p=0

s∑

l=0

AKpl A
T H Z(µpl, τpl)(DTn)p



A. (43)

Hence, the fundamental matrix equation for Eq. (1) can be reduced to show the relation ex-
pressed in the following form:

W C = G or [W ;G] , (44)

which corresponds to a system of n + 1 linear algebraic equations with the n + 1 unknown
Bernstein coefficients c0, . . . , cn. Consequently, to find the approximate solution of Eq. (1)
under mixed conditions (2), the rows matrices (37) is replaced by the rows of matrices (44), in
order to yield the new augmented matrix W̄C = Ḡ. For convenience if the last m rows of the
matrix (44) are replaced, the augmented matrix of the above system is as follows:

[
W̄ ; Ḡ

]
=




w00 w01 · · · w0n; g(x0)
w10 w11 · · · w1n; g(x1)
...

...
...

...
wn−m, 0 wn−m, 1 · · · wn−m, n; g(xn−m)

u00 u01 · · · u0n; λ 0

u10 u11 · · · u1n; λ 1
...

...
...

...
um−1, 0 um−1, 1 · · · um−1, n; λm−1




. (45)
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However, we do not have to replace the last rows. If rank(W̄ ) = rank(
[
W̄ ; Ḡ

]
) = n + 1, then

the relation can be expressed as:

C = (W̄ )−1 (Ḡ). (46)

The matrix C (thereby the coefficients c0, . . . , cn) is uniquely determined by Eq. (46). Thus
the m -th order linear Fredholm integro-differential-difference equation with variable coefficients
(1) under the mixed conditions (2) has a unique solution, provided by the truncated Bernstein
series (3). Under circumstances where, det (W̄ ) = 0 and rank(W̄ ) = rank(

[
W̄ ; Ḡ

]
) < n + 1,

any particular or general solution can be arrived at. If rank(W̄ ) 6= rank(
[
W̄ ; Ḡ

]
) < n+1, then

no solution would be contemplated. When conditions are not given, a general solution can be
obtained by taking rows zero of the augmented matrix

[
W̄ ; Ḡ

]
.

4. Accuracy of solution

If the exact solution is known, then the error function would be the difference between ap-
proximate solution yn+1(x) and the exact solution y(x) defined by En+1(x) = |y(x)− yn+1(x)|.
Otherwise, it has to be estimated as follows [15, 9, 52]. Since the truncated Bernstein series (3)
is an approximate solution of Eq. (1), and where the solution yn+1(x) and its derivatives are
substituted in Eq. (1), the resulting equation should therefore be approximately satisfied; that
is, for x = xϑ ∈ [0, 1]; ϑ = 0, 1, 2, . . .

E(xϑ) = |D(xϑ)− g(xϑ)− λ IF (xϑ)| ∼= 0, (47)

or

E(xϑ) ≤ 10−θϑ (θϑ is any positive integer). (48)

If

max 10−θϑ = 10−θ (θ is any positive integer), (49)

is prescribed, then the truncation limit n is increased until the difference E(xϑ) at each points
xϑ becomes smaller than the prescribed 10−θ . The error function can thus, be estimated by
the following relation:

En+1(x) = D(x)− g(x)− λ IF (x). (50)

If En+1(x) → 0 , when n is sufficiently large enough, then the error decreases.

5. Illustrative examples

The method presented here is applied to solve six cases, the computations of which are carried
out by application of Matlab 7.1 on a PC computer. When the problem is defined in a finite
range [a, b], by using the linear transformation

x = (b− a) ρ + a, (51)

the range of which can then be converted to the range [0, 1]. The absolute errors in Tables are
the values of |y(x)− yn+1(x)| at the selected points of the interval [0, 1].

Example 1. Consider the second order linear Fredholm integro-differential-difference equa-
tion given in [25] by

y′′(x) + y′′(x− 1) + 2x y′(x− 2) =
4x2 − 15x + 4 + 12

∫ 1
0 x t y(t) dt, 0 ≤ x, t ≤ 1,

(52)
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with the boundary conditions y(0) = 1, y(1) = 1. Under such circumstances, the followings can
be produced:

p10(x) = 2x, p20(x) = 1, p21(x) = 1,

µ10 = 1, τ10 = −2, µ20 = 1, τ20 = 0, µ21 = 1, τ21 = −1,

γ00 = 1, δ00 = 0, g(x) = 4x2 − 15x + 4, λ = 12, κ00(x, t) = x t.

(53)

The exact solution of this example is y(x) = x2 − x + 1. Let us assume that the problem has a
B-polynomial solution in the form

y(x) =
n∑

i=0

ci Bi, n(x), 0 ≤ x ≤ 1. (54)

By applying the similar technique to what was described in the section 3, the matrix represen-
tation equation of this problem can therefore, be expressed as follow:

{
P10 T Z(1, −2)DTn + P20 T Z(1, 0)D2

Tn
+ P21 T Z(1, −1)D2

Tn

−12T A K00 AT H Z(1, 0)
}

AC = G.
(55)

Here, for n = 2 the collocation points are computed as

x0 = 0, x1 =
1
2
, x2 = 1, (56)

and we have

P10 =




0 0 0
0 1 0
0 0 2


 , P20 =




1 0 0
0 1 0
0 0 1


 , P21 =




1 0 0
0 1 0
0 0 1


 ,

T =




1 0 0
1 1

2
1
4

1 1 1


 , Z(1, −2) =




1 −2 4
0 1 −4
0 0 1


 , Z(1, 0) =




1 0 0
0 1 0
0 0 1


 ,

Z(1, −1) =




1 −1 1
0 1 −2
0 0 1


 , DTn =




0 1 0
0 0 2
0 0 0


 , A =




1 0 0
−2 2 0
1 −2 1


 ,

K00 =




0 0 0
0 1

4
1
2

0 1
2 1


 , H =




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


 , G =




4
−5

2

−7


 .

(57)

For the boundary conditions y(0) = 1 and y(1) = 1, the augmented matrices are respectively
obtained in the following form:

[U0;λ0] =
[

1 0 0; 1
]

and [U1; λ1] =
[

0 0 1; 1
]
. (58)

From (45), using the matrices P10, P20, P21, T, Z(1, −2), Z(1, 0), Z(1, −1), DTn , A, K00, H,
[U0; λ0] and [U1;λ1], the augmented matrix based on the conditions y(0) = 1 and y(1) = 1 can
be found as:

[
W̄ ; Ḡ

]
=




4 −8 4; 4
1 0 0; 1
0 0 1; 1


 . (59)

This system has the unique solution

C =
[

1, 1
2 , 1

]T
. (60)
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Table 1. Comparison of the absolute errors for Example 2.

x n = 6 n = 9
Method of [25] Presentmethod Method of [25] Presentmethod

0.0 0 0 0 0
0.2 3.3357E − 05 4.7276E − 07 3.8135E − 09 5.5864E − 09
0.4 3.7219E − 04 1.6717E − 06 2.9036E − 08 3.3643E − 08
0.6 1.7152E − 03 1.8788E − 06 2.4991E − 07 8.5778E − 08
0.8 5.4450E − 03 2.0250E − 06 3.6276E − 06 1.5776E − 07
1.0 1.3998E − 02 3.3795E − 05 2.2228E − 05 2.4457E − 07
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Figure 1. The comparison between absolute errors functions of Example 2 for some n.

By substituting the elements of this matrix into Eq. (3), the approximate solution of the given
problem in terms of the B-polynomials of degree 2 can be described by the following relation:

y(x) = x2 − x + 1, (61)

which is the exact solution.

Example 2. Consider the third order linear Fredholm integro-differential-difference equation
given in [15, 25, 50] by

y′′′(x)− (x− 1)y′′(x) + (x− 1)y′(x)− y(x) + y′(x− 1)
= ex−1 + x

(
e x− 1

ex− 21
e

)
+

∫ 1
−1 (x t− x2) y(t) dt,

−1 ≤ x, t ≤ 1,

(62)

with the initial conditions y(0) = y′(0) = y′′(0) = 1. The exact solution of which is y(x) = ex.

As can be seen from Table 1, the absolute errors obtained by the B-polynomials are compared
with the absolute errors of the Fibonacci polynomials [25]. It can therefore, be observed that
the yielded result is superior than the one provided [25]. The comparison between the absolute
errors functions for n = 6, 7, 8, 9 can be seen in Figure 1.
Example 3. Consider the third order linear Fredholm integro-differential-difference equation
given in [15, 52, 50] by

y′′′(x)− y′(x) = 2x (cos 1− sin 1)− 2 cos(x)
+

∫ 1
−1 x t y(t) dt, −1 ≤ x, t ≤ 1,

(63)

under the mixed conditions y(0) = 0, y′(0) = 1, y′′(0)−2y′(0) = −2. The exact solution is y(x) =
sin x. The absolute errors for n = 9 are obtained, the values of which are then tabulated for the
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Table 2. Exact and approximate solutions for Example 3.

x Exact solution Method of [52] Method of [15] Method of [50] Present method

0.0 0 −1.992188E − 17 0.600000E − 18 1.600000E − 14 3.436446E − 17
0.2 0.19866933080 0.1986693309 0.1986693306 0.1986693275 0.1986693308
0.4 0.38941834231 0.3894183530 0.3894183416 0.3894183266 0.3894183422
0.6 0.56464247340 0.5646424233 0.5646424696 0.5646424405 0.5646424729
0.8 0.71735609090 0.7173547372 0.7173560843 0.7173560459 0.7173560894
1.0 0.84147098481 0.8414714504 0.8414709745 0.8414709465 0.8414709818
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Figure 2. The comparison between approximate and exact solutions and absolute
errors functions of Example 3 for n = 9.

Legendre [52], Chebyshev [15], Boubaker [50] and B-polynomials in Table 2. The superiority
of proposed method in comparason with those presented in the methods [15, 52, 50] is vividly
clear. This is because under the circumstances of having the same number of base functions, the
absolute errors in the proposed method are quite lower. A plot of the exact and approximate
solutions and absolute errors functions of this example for n = 9 are shown in Figure 2, which
demonstrates the accuracy in the order of 10−9.
Example 4. Consider the third order linear Fredholm integro-differential-difference equation
given in [17, 25] by

y′′′(x)− x y′(x) + y′′(x− 1)− x y(x− 1) = − (x + 1) [sin(x− 1) + cos x]− cos 2 + 1
+

∫ 1
−1 y(t− 1) dt, −1 ≤ x, t ≤ 1,

(64)

under the initial conditions y(0) = 0, y′(0) = 1, y′′(0) = 0. The exact solution is y(x) = sin x.

The problem is solved using the method described in Section 3 with n = 6, 7, 8, 9. The com-
parison of approximate solutions of the present method with that in [17] and the exact solution
can be seen in Table 3. The compassion of the absolute errors for equal basis functions for the
B-polynomials and Fibonacci polynomials [25] are shown in Table 4, showing the superiority of
the yielded results by the present method relative to those in [17, 25]. Figure 3 shows a plot of
Fibonacci method, Bernstein method and exact solution for n = 8.
Example 5. Consider the third order linear Fredholm integro-differential-difference equation
given in [9] by:

y′′′(x)− x y′′(x− π
2 )− y′(x + π

2 ) = (x + 1) sin x

+cos x− 2x +
∫ π

2

−π
2

[
x y′(t− π

2 )− t y(t)− t y′(t + π
2 )

]
dt,

(65)
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Table 3. Exact and approximate solutions for Example 4.

x Exact solution n = 6 n = 7
Method of [17] Present method Method of [17] Present method

0.0 0 0.000000 1.34137E − 16 0.000000 5.87294E − 16
0.2 0.198669 0.199128 0.198578 0.198616 0.198658
0.4 0.389418 0.393117 0.388822 0.388609 0.389347
0.6 0.564642 0.577468 0.563064 0.560822 0.564455
0.8 0.717356 0.749137 0.714589 0.705877 0.717030
1.0 0.841471 0.907265 0.837849 0.814098 0.841049

Table 4. Comparison of the absolute errors for Example 4.

x n = 8 n = 9

0.0 5.6297E − 17 4.3086E − 16 1.1532E − 15 2.9001E − 15
0.2 2.9832E − 03 3.5927E − 05 1.6864E − 02 5.1103E − 08
0.4 2.4285E − 02 2.3426E − 04 1.3068E − 01 3.2921E − 07
0.6 8.3055E − 02 6.1909E − 04 4.2574E − 01 8.5374E − 07
0.8 1.9913E − 01 1.0828E − 03 9.7197E − 01 1.4466E − 06
1.0 3.9374E − 01 1.4101E − 03 1.8261 1.7696E − 06
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Figure 3. The comparison between exact and approximate solutions of Example 4 for
n = 8.

Table 5. Comparison of the absolute errors for Example 5.

x n = 5 n = 10
0.0 0 1.0658E − 14
0.2 6.0008E − 05 1.5446E − 06
0.4 3.0581E − 04 1.0662E − 05
0.6 4.4703E − 04 2.9754E − 05
0.8 2.8758E − 04 5.5130E − 05
1.0 3.0546E − 03 7.7492E − 05

with the initial conditions y(0) = 1, y′(0) = 0, y′′(0) = −1, where the exact solution is
y(x) = cos x. This can be solved by application of the method described in Section 3 and
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Figure 4. The comparison between exact and approximate solutions of Example 5 for
n = 10.

the absolute errors for n = 5, 10 are tabulated in Table 5. These show that increase in the trun-
cation limit n correspondingly increases the possibility of having less error. As can be observed
with n = 5, 10 the absolute errors obtained by the application of Taylor polynomial method at
x = π/4 are 1.3×10−2, 1.8×10−4 respectively. However, the absolute errors at the same points
in present method are 1.8× 10−4, 5.3× 10−5 respectively. Figure 4 shows a plot of the approxi-
mate and exact solution of this example for n = 10, which shows almost identical solutions.

Example 6. Consider linear delay difference equation [19]

(x + 3) y(x + 2)− 2 (x + 2) y(x + 1) + (x + 1) y(x) = 0, (66)

with the boundary conditions y(0) = 0, y(1) = 1/2, where the exact solution is y(x) = x/(x + 1).
This can be solved by application of exact method as described in Section 3 with n = 8, 9. The
comparison of absolute errors attributed to the present method and those in [19] is shown in
Table 6, showing the B-polynomials having a higher accuracy than the Laguerre polynomials
[19] (with the same degree).

Table 6. Comparison of the absolute errors for Example 6.

x n = 8 n = 9
Method of [19] Presentmethod Method of [19] Presentmethod

0.0 3.2000E − 06 5.3772E − 14 1.0000E − 07 7.9582E − 14
0.1 6.1928E − 04 1.9972E − 04 5.5292E − 04 5.4679E − 04
0.2 2.3891E − 04 5.8135E − 04 9.1094E − 04 8.3790E − 04
0.3 1.5797E − 03 9.6213E − 04 9.2713E − 04 8.5153E − 04
0.4 2.7238E − 03 1.1929E − 03 6.9451E − 04 6.4785E − 04
0.5 3.3201E − 03 1.2141E − 03 3.6362E − 04 3.3757E − 04
0.6 3.2855E − 03 1.0465E − 03 6.1970E − 05 3.6638E − 05
0.7 2.7215E − 03 7.6081E − 04 1.3306E − 04 1.6780E − 04
0.8 1.8312E − 03 4.4392E − 04 1.9514E − 04 2.3379E − 04
0.9 8.4832E − 04 1.7316E − 04 1.3786E − 04 1.6498E − 04
1.0 1.7300E − 05 0 6.9000E − 07 0



S. DAVAEIFAR et al: BERNSTEIN POLYNOMIAL APPROACH FOR SOLUTION... 59

6. Conclusion

A numerical method for solving m -th order linear Fredholm integro-differential-difference
equations under mixed conditions by approximating the solution in the Bernstein polynomial
basis is proposed. The solution of equation was considered primarily in the form of expansion
of Bernstein basis functions of n -th degree. The method proposed in this paper, reduces the
high order linear Fredholm integro-differential-difference equations into a set of algebraic ones.
One of the most important features of this method, among others, is that the Bernstein poly-
nomial coefficients of the solution are found very easily by using computer programs. Another
advantage being that under the circumstances where the solution of equation is in the form of a
polynomial of degree equal to or less than n, then, the exact solution is obtained. However, in
the absence of polynomial solution, Bernstein series approximation converges to the exact solu-
tion as n increases. Comparative assessment of applying the proposed method on six different
test problems with their exact solutions and those of the existing methods shows the effective-
ness and convenience of the proposed method. The method also demonstrates a high relative
accuracy for small values of n, specially with a short run time. There is also a direct relation
between the value of n and accuracy of the obtained result. In other words, any increment in
the value of n would correspondingly increase the accuracy of the results. The approach can
be applied with a slight modification to solve the system of linear integro-differential-difference
equations having variable coefficients.
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